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LIQUID CRYSTALS, 1995, VOL. 19, No. 5, 647-651 

Quasi-uniaxial treatment of elasticity in smectic C* 
liquid crystals 

by S. STALLINGA" and G. VERTOGEN 
Institute for Theoretical Physics and Research Institute for Materials, 

University of Nijmegen Toernooiveld, 6525 ED Nijmegen, The Netherlands 

(Received 31 March 1995; accepted J June 1995) 

An approximate description of the elastic behaviour of smectic C* liquid crystals is introduced 
in order to facilitate the experimental and numerical analysis of these materials. In this way the 
original number of 14 independent elastic parameters is reduced to six in the approximate 
description. 

1. Introduction 
In recent years a lot of attention has been paid to smectic 

C* liquid crystals. The description of the elastic behaviour 
of these materials is quite complicated, as their local 
orientation must be specified by three orthonormal 
vectors. The elastic free energy involves 11 bulk elastic 
constants and three surface elastic constants [ 1-51. Until 
now experimental methods for determining all these 
constants do not exist [6]. In view of this fact and the 
mathematical complexity of the free energy expression a 
simplified description may be quite fruitful. 

In this paper an approximate description of the elastic 
behaviour of the smectic C* phase is introduced. The basic 
ingredient of this approximation is an additional symmetry 
requirement. The result is a free energy expression 
with five bulk elastic constants and only one surface 
elastic constant. The approximation is formulated 
mathematically in Q 2. Then a simple illustration of the 
approximation is given in 0 3. Next, in 5 4, the approxi- 
mation is applied to the full expression of the smectic C* 
phase. Finally a summary of the main conclusions is 
presented in 0 5. 

2. Mathematical formulation of the approximation 
The local orientation of a biaxial liquid crystal is 

specified by three orthonormal vectors, the directors a, b 
and c. They are represented in terms of the Eulerian angles 
&r), 4(r) and $0.) by 

a = (sin 8 cos 4, sin 0 sin 4, cos O ) ,  (1 a )  

b = cos $ (cos 0 cos 4, cos 0 sin 4, - sin 8) 

+ sin $( - sin 4, cos ( p , O ) ,  (1 b) 

* Author for correspondence. 

c = - sin $(cos 0 cos 4, cos 8 sin 4, - sin 0) 

+ cos I)( - sin 4, cos 4 ,O) .  ( 1  c)  
The angle $(r) describes the orientation of b and c in the 
plane perpendicular to a, i.e. is connected with the 
biaxiality of the liquid crystal. The general expression of 
the free energy density due to elastic deformation reads [7] 

where the invariants D, are given by 

DII = +[c-(V X c) + a - ( V  X a) - b 

Dl2 = - c*(V X b), 

DI3 = - a.(V X b), 

D21 = - b.(V X c), 
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648 S. Stallinga and G. Vertogen 

for k = 1,2,3. The parameters klj, €& = KklV and &k are 
the elastic constants. In the most general case there are 9 
chiral elastic constants k,, 45 elastic constants Kijkl and 
18 elastic constants Lvk. In order to avoid confusion, it 
should be noted that the elastic constants k,, Kijkl and Lijk 
as well as the invariants Di, are scalars, although the use 
of Latin indices to label them may suggest that they are 
tensors. 

The expression (2) contains, apart from the 18 surface 
terms Silk, an additional number of 9 surface terms 171. 
Three of these surface terms can be expressed as a linear 
combination of terms linear in the invariants D,, whereas 
the remaining six surface terms can be written as a linear 
combination of terms quadratic in the invariants Du. This 
means that three terms linear in D, can be replaced by 
surface terms and the remaining 6 terms linear in D,, 
whereas six terms quadratic in Dq can be replaced by 
surface terms and the remaining 39 terms quadratic in D,;. 

A further reduction of the number of elastic parameters 
is possible in case of uniaxial symmetry around a certain 
axis, say a. Then the deformation free energy density is 
invariant with respect to an arbitrary rotation of the 
directors b and c around a. This means that neither 
the Eulerian angle $(r) nor the gradient V$(r) may appear 
in the deformation free energy density. The dependence on 
$(r) is eliminated by means of the relations (6). However, 
the dependence on V$(r) must be eliminated by means of 
additional symmetry relations; that is, the invariants D ,  
depending on V$(r) must be excluded. It appears that only 
the invariants D,3 depend on V$(r). Thus the additional 
symmetry relations read 

- 

The 18 surface terms SIJk are of a different nature. They can 
be expressed as a linear combination of terms quadratic in 
the invariants D ,  and terms linear in the spatial derivatives 
of the invariants D,. 

In the following it is important to realize that symmetry 
of the phase entails equivalent choices of the directors. 
For example, if the liquid crystal is symmetric with respect 
to a reflection in a plane perpendicular to a, the set of 
directors { a ,  b , c )  is equivalent to the set of directors 
{ ~ a, b, c ) .  In general, the set { a ,  b, c }  is related to an 
equivalent set { a ' ,  b', c' } by 

for i , j , k =  1,2,3. 
In order to obtain the approximate description of the 

smectic C* phase, it must be realized that the biaxial 
character of that phase is expressed by $(r) as well as 
V$(r). Further the smectic plane is identified with the 
plane spanned by the vectors b and c. The approximation 
boils down to neglecting the dependence ofthe free energy 
density on $(I). Thus the biaxiality is only taken into 
account by V$(r). This means that the elastic constants are 
required to satisfy the symmetry relations (6) that hold for 
uniaxial symmetry around the smectic layer normal a. 

a' = T33a + T32b + T3?c, (5 a )  

b' = T13a + T l l b  + T12c, ( 5  b) 

c' = T23a + T2rb + T22c, (5  c> 

where the numbers Tv are the matrix elements of the 
symmetry transformation. It should be remarked that 
equations ( 5 )  hold for all space-fixed coordinate frames. 
Thus the numbers TI, are scalars. All physical properties, 
such as the elastic properties, remain unchanged under 
such a transformation of the directors. Consequently the 
elastic constants satisfy the relations [7] 

KijkI = C TmiTniTpkTqlKmnpq, (6 b) 
"' .".p.L,= 1 .2 , i  

Liyk = C TTntiTnjTpkLmnp (6 c )  
m.11.p= 1.2,3 

for all transformations belonging to the symmetry group 
of the particular phase under consideration. Here T = t 1 
is the determinant of the transformation matrix. These 
symmetry relations reduce the number of independent 
elastic constants. 

Therefore the present approximation can be called a 
quasi-uniaxial approximation. For the sake of clearness, 
a similar approximation for uniaxial liquid crystals, the 
quasi-isotropic approximation, is treated first. 

3. The quasi-isotropic approximation 
The gist of the quasi-isotropic approximation is the 

requirement that the elastic constants satisfy the relations 
(6) for all possible rotations. Then it follows that the elastic 
constants must be expressed in terms of the Kronecker- 
symbol d,], i.e. 

kri = Ydrj, (8 ( 1 )  

Kijk/ = B ~ d i j [ g k l  f P Z f i i k 6 j i  + 8 3 [ ~ i l ~ ~ , k ,  (8 b) 

Lijk = 0. (8 c )  

As to the elastic constants Kukl, this result has also becn 
derived by Liu [8]. The elastic constant 1' equals zero for 
a non-chiral nematic. Further, the uniaxial character of the 
nematic must be taken into account. Consequently, 
choosing a as the uniaxial axis, all invariants Dl.3 must be 
put equal to zero. Then the quasi-isotropic approximation 
gives rise to the following free energy density of a nematic: 
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Quasi-uniuxiul treatment of smectic C* 649 

ti = i P z ( v ~ a ) ~  + $ ( P I  + 8 2  + B3)(a-(v x a))* 

+ $P2(a x (V x a))2 

+ +(P2 + P3)V - [(a * V)a - a(V - a)]. (9) 

The full deformation free energy density reads [9-111 

= + K I I ( V . ~ ) ~  + $K22(a.(V X a))' 

+ + ~ ~ ~ ( a  x (V x a))2 

++(&+ K24)V-[(a*V)a-a(V.a)] 

+ K13V-[a(V.a)]. (10) 

Consequently it holds that 

KI I = K33 = 82, (1 1 a )  

K22 = PI + P 2  + P3. (11 b) 

K24= - @ I ,  (11c) 

K13 = 0. (11 4 
Clearly the quasi-isotropic approximation for uniaxial 
liquid crystals boils down to neglecting the splay-bend 
surface elastic constant as well as the difference between 
the elastic constants for splay and bend. 

In order to examine the merits of the simplified 
description of nematics, the optical transmission of a 
non-twisted nematic liquid crystal cell filled with the 
liquid crystal 4'-n-pentyl-4-cyanobiphenyl (5CB) is con- 
sidered. To that end the result of the quasi-isotropic 
approximation is compared with the result based upon the 
measured KII  and K ~ T  values. These values are at room 
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Exact and approximate optical transmission of a 
3 pm thick cell filled with 5CB between crossed polarizers 
for 632.8nm light. The polarizers are at 45" with the 
rubbing direction. The dielectric constants are E~ = 5.5 and 
EII = 16.1 [14] and the refractive indices are n, = 1.709 and 
no= 1.531 [15]. The surface tilt was taken to be 2" 
independent of the applied voltage, i.e. strong anchoring 
conditions are assumed. 

Figure 1 .  

temperature: KI1 = 7.05 pN, K33 = 9.75 pN [ 121. The 
average value KII = K33 = 8.40pN is taken in the quasi- 
isotropic approximation. The results of the calculations are 
shown in figure 1 .  It appears that the approximation works 
reasonably well, bearing in mind that the relative 
difference between the splay and bend elastic constants 
amounts to 30 per cent. The same conclusion can be drawn 
for commercially available liquid crystal mixtures in view 
of the values of their elastic constants, i.e. K33/K11 = 1.4 
and K33/K22 = 2.5, respectively [13]. 

4. The quasi-uniaxial approximation for smectic C* 
liquid crystals 

In order to apply the quasi-uniaxial approximation, the 
director a is chosen perpendicular to the smectic layers. 
Further the director b is taken along the axis of twofold 
rotation symmetry. In addition to orientational deforma- 
tions, smectics allow for positional deformations. The 
general form of the deformation free energy density of a 
smectic C* liquid crystal has been given in [l-51. 
According to [5] this deformation free energy density 
reads 

fd = + +AtiD:I + &~IzD& + +A21D:2 

+ +BID& + $&D:3 + +B3Di3 

+ B13D23D33 

+ C1DiiD23 + c2D12D13 - 0 0 3 3  

+ Es(DI~D~I  + D:I)  + Ec911D33 

+ EdDi3D21 - Dz~DII) .  (12) 

The positional deformations of the smectic are taken into 
account by the layer compression term iy2/2, where A is 
the positional elastic constant and y is given by 

? = a u  I I -I z { ( a d d  + (ayu,)' + ( ~ z u A 2 1 .  (13) 
Here uz is the displacement of the smectic layer perpen- 
dicular to the undistorted flat equilibrium layer, which is 
assumed to lie in the ny-plane. Further, the coupling 
between positional and orientational deformations leads to 
the Oseen-condition 191 

VXa=O. (14) 
Application of the requirement that the symmetry 

relations (6) hold for all possible rotations around a 
results in 

All =A12=A21 = A ,  (15 a )  
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E6 = E7 = 0. (15h) 

Consequently the number of independent elastic parame- 
ters is reduced from 14 to six in the quasi-uniaxial 
approximation. The resulting expression for fd can be 
rewritten in terms of the usual vector notation with the aid 
of the Oseen-condition (14) and the relations 

(16a) D ~ I  - Dl2 = V -a,  

D33= )[b.(V X b) + c*(V X C) 

- a.(V X a)], (16b) 

Dli  = V - c  - b-(V X a), (16c) 

D21= - V - b - c - ( V X a ) ,  ( 1 6 4  

DI2D2,  - D11D22=)V-[(a.V)a-a(V*a)J. (16e) 

Then the deformation free energy density of a smectic C* 
liquid crystal in the quasi-uniaxial approximation can be 
expressed as 

fd = ; 2y2 + ;A(V - a)’ 

+ )B,[)((b-(V X b) + c . ( V  X c ) } ] ~  
+ B,qo[+((b*(V X b) + c * ( V  X c))]  

+ ) B ~ I [ ( V * ~ ) ~  + (V-C)’] 

+ +ALV-[(a-V)a - a(V.a)]. (17) 

Three terms in (17) correspond to deformations of the 
smectic layers. The 2 term is associated with the 
compression and dilatation of the smectic layers, the A 
term with the splay of the normal to the smectic layers and 
the A,  surface term with the saddle-splay of the normal to 
the smectic layers. The local shape of the smectic layers 
for these last two deformations is shown in figure 2. The 
other three terms in ( 1  7) correspond to deformation5 of the 
directors b and c.  The B ,  terms involve the twist of b and 
c, and the BII term involves the splay of b and c.  These 
deformations can be conveniently shown using the 
director n, which is defined by 

n = cos to a + sin o c ,  (18) 

where m is the so-called tilt angle. From a molecular point 

splay saddle-splay 

Curved smectic layers in the case of bplay defor- 
mation of the layer normal and a saddle-Fplay deformation 
of the layer normal. 

Figure 2. 

of view, the long axes of the molecules are on average 
directed along n. Then the c director corresponds to the 
projection on the smectic layers of the average direction 
of the long axes of the molecules. The director n is 
constrained to a cone with a top angle (a around a, in the 
case that the smectic layer structure is fixed. Both the B I  
terms and the BII term describe spatially dependent 
rotations of n over the smectic cone. The B L  terms give 
the spatial dependence in a direction perpendicular to the 
smectic layers, whereas the Llll term gives the spatial 
dependence parallel to the smectic layers. These deforma- 
tions are shown in figure 3. The director fields b(r) and c(r) 
are twisted in equilibrium, i.e. the director n precesses 
around a in the direction perpendicular to the smectic 
layers. The pitch of this helix deformation is given by 

As to the uscfulness of the quasi-uniaxial approxi- 
mation of the free energy density of the smectic C* phase, 
the following remarks should be made. First of all the 
quasi-uniaxial expression reduces to the one used by 
Glogarov2 et al. [16, 171, and by van Haaren 161 in the 
analysis of their experiments for the special case of rigid 
smectic layers, i.e. 7 = 0 and a is spatially independent. 
The resulting expression involves only three parameters, 
namely the helical pitch 2dqo  and the elastic constants B,I 
and BL. The experiments of Willis et al. [ 183, suggest that 
the approximation of rigid smectic layers is reasonable. 
From a theoretical point of view it would be interesting to 

27clqo. 

Figure 3. Twist deformation of the directors b and c (rotation 
of the n director over the smectic cone perpendicular to the 
smectic layers) and splay deformation of the directors b and 
c (rotation of the n director over the smectic cone parallel 
to the smectic layers). 
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Quasi-uniaxial treatment of smectic C* 65 1 

apply the quasi-uniaxial approximation to the study of the 
influence of an electric field on a smectic C* cell, 
analogous to the work of De Meyere et al. [ 19,201. Further 
the quasi-uniaxial approximation could be useful in 
treating the dynamical behaviour of displays based on the 
smectic C* phase, because it can be expected that the 
number of dynamical parameters, for example, viscosity 
coefficients, is substantially reduced as well. In general, 
the usefulness of the quasi-uniaxial approximation must 
appear from its adequacy to describe experimental results. 
Unfortunately the elastic constants of smectic C* liquid 
crystals are unknown, i.e. a definite assessment cannot be 
made. However, the adequacy of the analogous quasi- 
isotropic approximation seems to point out that the 
quasi-uniaxial approximation may be relevant as well. 
Finally it should be mentioned that the present approxi- 
mation differs essentially from the approximation of 
Nakagawa [21] as to the invariants that appear. 

5. Conclusion 
In order to reduce the large number of independent 

parameters that appear in the description of the behaviour 
of biaxial liquid crystals, the free energy density is 
approximated by only taking into account a part of the 
biaxial character of the phase. In this way a simplified 
expression of the free energy density is obtained that may 
be useful for experimental and numerical analysis of 
complex liquid crystalline phases such as the smectic C* 
phase. The resulting, so-called quasi-uniaxial, approxi- 
mation requires that the elastic constants satisfy a part of 
the symmetry relations of the uniaxial phase. A similar 
approximation, the quasi-isotropic approximation, can be 
made for the uniaxial phase. The quasi-uniaxial approxi- 
mation for describing smectic C* liquid crystals involves 
six elastic parameters instead of the 14 parameters 
appearing in the exact theory. These six parameters consist 
of three parameters that are related to deformations of the 
smectic layers. These deformations are the compression 
and dilatation of the smectic layers, the splay of the 
smectic layer-normal and the saddle-splay of the layer 
normal. The contribution due to the saddle-splay defor- 
mation is a surface term. The remaining three parameters 
are related to deformations of the directors b and C. Two 

parameters are associated with the twist of b and c, and one 
parameter is associated with the splay of b and c. One of 
the two parameters related to the twist deformation is the 
pitch of the equilibrium helix deformation. 

We are indebted to J. A. M. M. van Haaren of the Philips 
Research Laboratories for pointing out the discrepancy 
between the theoretical analysis of the elastic free energy 
of smectic C* and the development of measurement 
methods for the elastic constants of this phase, which 
motivated this work. 
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